

Measuring the Effectiveness of Introducing New Methods in the Software Development Process

TESTART: ESSI Project 23683

M. Winokur, A. Grinman, I. Yosha, R. Gallant

Content

- What is TESTART
- ◆ The "Base Project"
- Measurable Goals & Objectives
- ◆ TESTART Project Major Steps
- Methods and Tools Selection
- Insertion of methods and tools
- Data Item Definition
- Historical Data
- TESTART project status
- Interim lessons learned

What is TESTART

- Experiment in software improvement process with emphasis in requirements management and software testing.
- ◆ Sponsored by the ESSI (European Systems & Software Initiative).
- ◆ The project Initiated in April 1997.
- Expected completion date: March 1999.

Organizational Background

- ◆ TESTART is performed in an avionics "base project" at the TAMAM division of Israel Aircraft Industries (IAI).
- ◆ TAMAM has been assessed at CMM level 2 in May 96 and CMM level 3 in November 97.
- ◆ The "base project" is typical of embedded systems development at IAI's divisions.

The "Base Project"

- The project includes a new mission computer and the integration of new and existing subsystems.
- ◆ The mission computer contains:
 - Central processing card based on Power PC for computing and communication.
 - I/O cards for aircraft interfaces.
 - Video card for symbology and video capabilities.

Base Project Development Environment

- ◆ Two main development phases:
 - ▶ Phase 1 Coding, unit testing and subsystem integration on PC workstations.
 - Phase 2 Subsystem and system integration on the real target.
- ◆ Coding languages: C and C++ .
- ◆ PC development environment: Windows, compiler -Borland C++ .
- ◆ Target environment: pRIZM+, O/S pSOS, compiler DiabData.

Measurable Goals & Objectives

- ◆ Initial estimates of improvement:
 - Increase requirements test coverage by 15% (80 to 95).
 - Increase portion of code exercising in testing by 15% (60 to 75).
 - Reduce integration testing phase by 5% (30 to 25).
 - Reduce the overall software testing cost by 10% (50 to 40).
- Initial estimates in comparing with the results being gathered.

TESTART Project Major Steps

- ◆ Definition of methodology.
- ◆ Tools selection.
- Insertion of selected methods and tools into the base project.
- ◆ Definition and Collection of historical data for measurement reference.
- Collection of performance data from the base project.
- Analysis of results and drawing conclusions.

Methods and Tools Selection

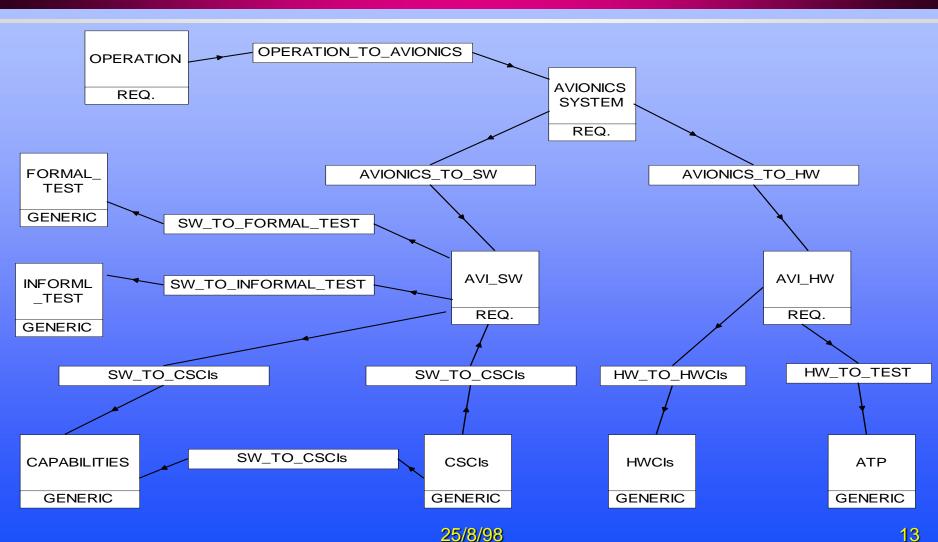
- Methods were defined, and supporting tools selected in the areas of:
 - Requirement management.
 - Software testing.
- These methods and tools are complementary to the existing development process at IAI/TAMAM.

Requirements Management Tool Selection

- ◆ Two commercial tools have been studied:
 - DOORS by Quality Software Systems.
 - RTM by Integrated Chipware.
- ◆ The selection process included:
 - Definition of the requirements management process.
 - Analysis of the impact of each tool's features on the defined process.
- As a result, RTM was selected

Features Supporting RTM's Selection

- Class definition diagram.
- Graphical Audit trail.
- Graphical Interface for query and reports.
- Based on commercial database ORACLE for tracking large projects.


RTM Class Definition Diagram

- ◆ User defined project specific definition diagram:
 - Classes and relationships (associations).
 - Class attributes.
 - Access rights.
- Provides utilization of project tailored requirements management process.

Base Project class diagram

Software Testing Tool Selection

- ◆ Selection criteria for testing tool:
 - Support static and dynamic testing.
 - Support code coverage testing.
 - Automatic code generation for drivers and stubs.
 - Configuration management of test cases and results.
 - User friendliness.
 - Tool support by the vendor.
- ◆ The tool selected: Cantata from Information Processing Limited (IPL).

Insertion of Methods and Tools

- Requirements management and testing methodologies training.
- ◆ Tools training:
 - provided by senior vendor representatives at user facilities.
 - includes hands on exercising.
- Training was provided to the project technical staff and to core people within the organization.
- For each tool we tailored user manuals for project needs.

Insertion of Methods and Tools (cont)

◆ Tool interoperability:

- Interface between RTM and TAMAM's existing metric and requirements change management tool (CDSD).
- Interface between tools and existing PC development environment (Windows, Word, ...).

Data Item Definition

- To evaluate the quantitative impact of the experiment the following data items were defined:
 - Software integration duration [hours / line of code].
 - Relative cost of software testing [test cost / total cost].
 - Coverage of requirements in software testing.
 - Software code coverage.
 - Cost of requirements change [hours / change].

Historical Data

	METRIC	Proj. A	Proj. A1	Proj. B	Proj. C
1.	Testing as a part of the overall project effort	= 15.3%	= 11%	= 16.6%	=8.57%
2.	Integration Time as a part of overall project development time	= 16.6% Sys Integ = 16.6%	= 7.3%	= 11.1% Sys Integ = 25.0%	= 30.6%
3.	Cost of Requirement Change [hours / change]	23.3	16.7	13	8.75
4.	Functional Coverage	Coverage =80%		Not available	Not available
5.	Code Coverage	Coverage =55% According to literature			

TESTART Project Status

- Definition of methodology.
- ◆ Tools selection.
- Insertion of selected methods and tools into the base project.
- Definition and Collection of historical data for measurement reference.
- Collection of performance data from the base project.
- Analysis of results and drawing conclusions.

Interim Results

- RTM is an integral part of the "base project" development environment:
 - Formulation of the requirements baseline including 600 main requirements.
 - Requirements change management using CDSD and RTM: 10 major requirements changes approved.
- Use of CANTATA has started for the unit test of new modules.

Cantata application: an example

- ◆ Two new units were tested with Cantata (effective C code lines: Unit A 104, Unit B 139).
- ◆ Decision, statement and assertion coverage: 100%
- ◆ Testing time: Unit A 26 hours, Unit B 35 hours.
- No errors found in Unit A and two errors found in Unit B.

Intended Use of CANTATA

- From the experienced acquired in TESTART until now, we have defined the following:
 - 55% of the code will be tested in development environment at unit test level.
 - 20% of the code (at least) will be tested on target at CSCI integration level.

Interim lessons learned

- Tools and methods training is crucial for successful insertion.
- Interoperability of new tools with the existing environment has practical and cultural impact.
- ◆ Early tangible benefits of tool usage are critical to acceptance by development staff.
- Gradual acquaintance with tool features increases the willingness to use them.
- Our experience until now with automatic unit testing shows that a suitable effort must be invested.