PAGE
2
© 2000, KPA Ltd., all rights reserved

Assessing Software Inspection Processes with STAM

Ron S. Kenett, Ph.D.

 CEO and Senior Partner,

KPA Ltd., Israel (www.kpa.co.il)

The Software Trouble Assessment Matrix (STAM) is a tool that software developers can use to evaluate the design and effectiveness of software inspection and testing processes so that they can be improved. STAM is used to organize relationships between three dimensions.

Three measures are easily computed from the data collected in a STAM analysis:

 Negligence ratio: This ratio indicates the amount of errors that escaped through the inspection process filters. In other words, it measures inspection efficiency.

 Evaluation ratio: This ratio measures the delay of the inspection process in identifying errors relative to the phase in which they occurred. In other words, it measures inspection effectiveness.

 Prevention ratio: This ratio is an index of how early errors are detected in the development life cycle relative to the total number of reported errors. This is a combined measure of the development and inspection processes. It assesses the software developer's ability to generate and identify errors as early as possible in the development life cycle.

Process improvements are the result of attempts to learn from current and past errors. Prerequisites to such improvement efforts are that the processes have been identified and that process ownership has been established. Typical development processes consist of requirements analysis, top-level design, detailed design, coding, and testing. A causal analysis of software faults classifies faults as being attributable to errors in any one of these activities. For such an analysis to be successful, it is essential that there be agreement on the boundaries of the processes represented by these activities. In particular, the entry and exit criteria for each process have to be clarified and documented. Such definitions permit effective data collection. STAM is a method to analyze data derived by answering three questions:

 Where were errors detected in the software life cycle?

 Where were those errors actually created?

 Where could the errors have been detected?

These three dimensions are positioned like the letter T, and two check sheets are used to record the number of errors classified in the various combinations of the three dimensions.

For example, consider a certain software version with a total of 110 reported errors at the completion of acceptance testing (see Figure 1). The errors were reported throughout the software life cycle, with the following distribution:

	Life Cycle Phase
	Number of Errors

	Requirements Analysis
	3

	Top Level design
	7

	Detailed Design
	2

	Programming
	25

	Unit Tests
	31

	System Tests
	29

	Acceptance Test
	13

From the T-type matrix in Figure 2, note that, of the seven errors detected during top level design, it was determined that two errors could have been detected in the review session that occurred after requirements analysis. These errors were missed by the reviewers. Of the 13 errors detected during acceptance testing, it was determined that one error could have been detected at the requirements analysis review session, one could have been detected after detailed design, six could have been detected during system testing, and five could have been detected only during acceptance testing. The implication is that eight errors escaped the inspection process filters. A similar analysis indicates that, of the five errors that could only have been detected during acceptance testing, one error is due to a requirement error, three are the result of errors in preliminary design, and one is due to a detailed design error.

A typical error analysis begins with assessing where errors could have been detected and concludes with classifying errors into the life-cycle phases in which they were created. This procedure requires a repeat analysis of each recorded error. As previously mentioned, the success of an error causal analysis is highly dependent on clear entry and exit criteria for the various development phases.

Once the STAM checksheets are completed, cumulative failure profiles are drawn depicting where errors were detected, where they could have been detected, and where they were created. The areas under these three cumulative frequency curves are defined as: Sl, S2, and S3, respectively (see Figure 1). These areas are determined by computing the cumulative totals over the seven software development phases.

A curve is drawn by connecting the results of these additions along the seven development phases. The area under this curve, labeled S1, is approximated by adding these numbers: S1 = 3 + 10 + 12 + 37 + 68 + 97 + 110 = 337. By referring to Figure 2, we see that the same procedure is followed to get the S2 and S3 computations (S2 = 427 and S3 = 588).

The negligence ratio is computed using the formula: 100 x (S2 - S1)/S1. As previously mentioned, it measures the amount of errors that escaped through the inspection process filters, indicating inspection efficiency. High inspection efficiency corresponds to low negligence ratios. For the data in Figure 2, the negligence ratio is 100 x (427 - 337)/337 = 26.7%, which indicates an average gap of 26.7% of a life-cycle phase between actual error detection time and perfect detection under the current inspection process.

[image: image1.wmf]1

2

3

4

5

6

7

34

56

73

100

105

110

110

6

22

32

71

79

105

110

3

10

12

37

68

97

110

0

20

40

60

80

100

120

Cumulative Errors

Development Cycle Phase

S1

S2

S3

Figure 1. Graph of the curves determining the S1, S2, and S3 areas

The evaluation ratio is derived using the formula: 100 x (S3 - S2)/S2. As previously mentioned, it measures the delay of the inspection process in identifying errors from the phase where they were created, indicating inspection effectiveness. High evaluation ratios correspond to low inspection effectiveness. For the data in Figure 2, the evaluation ratio is 100 x (588 - 427)/427 = 37.7%, which signals the need to redesign the inspection process so that it can detect errors closer to their creation. The current inspection filters, under perfect conditions, detect errors with a delay of 37.7% of a life-cycle phase.

The prevention ratio is computed using the formula: 100 x S1/(7 x total). As previously mentioned, it indicates how early errors were detected relative to the total number of reported errors (total) in the seven development phases. If all errors were created and detected during requirements analysis, the prevention ratio would be 100%. Since early errors are less costly to correct, a high prevention ratio implies a less costly development process. Conversely, a low prevention ratio indicates that errors were detected late in the process and therefore might negatively affect delivery schedules and customer satisfaction. In Figure 2, the prevention ratio is 43.7%, which indicates that errors were detected late in the life cycle.

Using the negligence, evaluation, and prevention ratios, software developers can better understand and improve their inspection and development processes. They also can use STAM to benchmark different projects within their companies and against those of different companies.

S O F T W A R E T R O U B L E A S S E S S M E N T M A T R I X

 Where were errors created in the software life cycle? Where were those errors detected?

	CUM.

CUM.

FRQ.

=

AREA

UNDER

CURVE
	C

U

M

U

L

A

T

I

V

E

F

R

Q

.
	A

C

C

E

P

T

A

N

C

E

T

E

S

T
	S

Y

S

T

E

M

T

E

S

T

S
	U

N

I

T

T

E

S

T

S
	P

R

O

G

R

A

M

M

I

N

G

	D

E

T

A

I

L

E

D

D

E

S

I

G

N
	T

O

P

level

D

E

S

I

G

N
	R

E
Q

U
I
R
E
M
E
N
T
S

	Where could the errors have been detected?
	A

C

C

E

P

T

A

N

C

E

T

E

S

T
	S

Y

S

T

E

M

T

E

S

T

S
	U

N

I

T

T

E

S

T

S
	P

R

O

G

R

A

M

M

I

N

G

	D

E

T

A

I

L

E

D

D

E

S

I

G

N
	T

O

P

level

D

E

S

I

G

N
	R

E
Q

U
I
R
E
M
E
N
T
S

	
	
	
	
	
	
	
	
	
	Errors found by phase ->
	13
	29
	31
	25
	2
	7
	3

	8
	8
	
	
	
	
	
	
	8
	Requirements Analysis
	1
	-
	-
	2
	-
	2
	3

	30
	22
	
	
	
	
	
	4
	10
	Top Level Design
	-
	4
	1
	3
	1
	5
	

	62
	32
	
	
	
	
	1
	4
	5
	Detailed Design
	1
	-
	7
	1
	1
	
	

	 133
	71
	
	
	
	15
	15
	4
	5
	Programming
	-
	-
	20
	19
	
	
	

	212
	79
	
	
	-
	6
	-
	2
	-
	Unit Tests
	-
	5
	3
	
	
	
	

	317
	105
	
	5
	5
	6
	-
	5
	5
	System Tests
	6
	20
	
	
	
	
	

	427
	110
	-
	-
	-
	-
	1
	3
	1
	Acceptance Tests
	5
	
	
	
	
	
	

	S2
	
	110
	110
	105
	100
	73
	56
	34
	Cumulative frequency
	110
	97
	68
	37
	12
	10
	3

	
	S3
	588
	478
	368
	263
	163
	90
	34
	 S1
	337
	227
	130
	62
	25
	13
	3

Figure 2. STAM T-Matrix

� This article is extracted from SOFTWARE PROCESS QUALITY: Management and Control by Kenett and Baker, Marcel Dekker Inc., 1998. It was first published as "Assessing Software development and Inspection Errors", Quality Progress, pp. 109-112, October 1994 with corrections in the issue of February 1995.

2

_956816212.xls
Sheet: Chart1

Sheet: Sheet1

Sheet: Sheet2

Sheet: Sheet3

Sheet: Sheet4

Sheet: Sheet5

Sheet: Sheet6

Sheet: Sheet7

Sheet: Sheet8

Sheet: Sheet9

Sheet: Sheet10

Sheet: Sheet11

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

3.0

6.0

34.0

10.0

22.0

56.0

12.0

32.0

73.0

37.0

71.0

100.0

68.0

79.0

105.0

97.0

105.0

110.0

110.0

110.0

110.0

S1

S2

S3

