Six Sigma Overview

© 2012 KPA Ltd., All rights reserved

KPA Ltd.

Management Consulting

- *KPA* is an international management consulting firm with offices in Israel and strategic partners in the US, Spain, Belgium, France and Central Europe.
 Formed in 1990 by Professor Ron Kenett as a partnership, the firm incorporated in 1994.
- The *KPA* staff consists of specialized consultants with expertise in strategic planning, market research, industrial statistics, quality and risk management, business development and human resource management. *KPA* is currently involved in the strategic planning of medium and large companies, in international market research and customer surveys, establishing quality systems and Six Sigma initiatives, organizational development, risk management and change management consulting.

The KPA Vision and Mission Statement

Our Mission

"To provide our customers with the expertise required to formulate strategies, concepts and breakthrough business processes that will turn their organizations into leaders in their field."

Our Vision

"To be known as a center of excellence in modern management methodologies and as a source of research and training in our field."

KPA areas of activity

- THE STRATEGY
- THE CUSTOMERS
- THE ORGANIZATION
- STATISTICAL METHODS

KPA areas of activity

KPA products and services

- Strategic Planning, Change Management, Six Sigma initiatives, joint ventures and M&A facilitation
- Market Research and Voice of the Customer Surveys
- Organizational Development, Appraisal Systems and Voice of the Workforce Surveys
- Statistical Consulting, Data Mining, Risk Management, Industrial Statistics, Biostatistics
- Six Sigma training and consulting

KPA clients' industrial areas

- Telecommunications
- Software
- Banking
- Plastics
- Chemicals
- Pharmaceuticals
- Food & Beverage
- Electronics
- Cellular Services
- Health Care
- Education
- Energy
- Transportation

KPA partial list of clients

- The Israel Electricity Corporation, utility
- The Open University, education
- hp Indigo, the electronic printing division of hp
- Cellcom, a leading Israeli cellular service provider
- ECI, telecom supplier
- Perrigo, pharmaceuticals
- Eden Springs, home office delivery
- Cisco, network management software
- Amdocs, billing systems
- Dead Sea Bromine Group, chemicals
- Bank Leumi, financial services
- Rafael, eletronics

Why Six Sigma?

"At Motorola we use statistical methods daily throughout all of our disciplines to synthesize an abundance of data to derive concrete actions....

How has the use of statistical methods within Motorola Six Sigma initiative, across disciplines, contributed to our growth? Over the past decade we have reduced inprocess defects by over 300 fold, which has resulted in a cumulative manufacturing cost savings of over 11 billion dollars"*.

Robert W. Galvin Chairman of the Executive Committee Motorola, Inc.

Zacks, Duxbury Press, 1998, Spanish edition 2000, 2nd paperback edition 2002, Chinese edition 2004.

The Basketball Analogy (2/2) 99.73% Fitted Normal Distribution USL LSL Mean 3•StDev **3•StDev** Min {Mean - LSL, USL - Mean} 3•StDev USL - LSL 6•StDev Cp = Cpk = Mance Scessm

Six Sigma Indicators (2/2)

C _p	PPM	Cpk	PPM	Sigma Level
0.67	50,000	0.17	308,770	2
1	2,700	0.5	66,811	3
1.33	63	0.83	6,210	4
2	0.002	1.5	3.4	6

C_p, C_{pk}, Defects Per Million and Sigma Level

Where are your critical processes?

The Juran Trilogy: Planning, Improvement and

Control*

Design for Six Sigma

The Organizational Structure:

Supporting Six Sigma implementation

Classification of projects

Six Sigma Methodology

Marathon Methodology

Matrix Criteria Ranking

- List criteria to assess projects brainstorming, eg
 - Impact on customer satisfaction
 - Required investment
 - Ability to implement etc.
- Select top 3 voting
- Voters place their votes for each criterion
- Add up votes for each project
 - Scale by 1 (low), 2 (medium) or 3 (high)
- Select projects

Project Prioritization

Project Prioritization

	Project Evaluation Matrix						H = High	M = Medium	L = Low		
KPA Ltd.	Impact			Required investment			Ability to implement				
Торіс	L	М	Н	L	м	Н	L	М	Н	Score	
High priority	o	0	8	8	0	0	0	0	8	100	
Low priority	8	0	0	0	0	8	8	0	0	0	
										-50	
										-50	
								-50			
Score = (impactH*3+impactN1*2+impactL*1+											
inv	estH*	1+inv	estM?	*7+in	vestI.*	3+				-50	
	CSUII	1 ' 111 V	CSUIVI	<i>2</i> ' 111	vest	51				-50	
abilityH*3+abilityM*2+abilityK*1											
	•	\ \ . !			```					-50	
-(3	*#vote	ers))*]	100/(6	#vote	rs)					-50	
										-50	
							-50				
										-50	
Voters = <u>8</u>											

Black Belt Training and Six Sigma Roadmap

Tracking Tools

Part 1

- Introduction to Six Sigma
- MINITAB Part 1- The MINITAB Environment
- MINITAB Part 2- Graphing Dta
- Exploratory data analysis

Part 2

- Basic Statistical Inference
- MINITAB Part 4- Analyzing Data
- Gage Repeatability and Reproducibility
- Process Mapping
- Failure Modes and Effect Analysis- FMEA

Black Belt Training and Six Sigma Roadmap

Tracking Tools

Part 3

- Statistical Process Control
- MINITAB Part 5 Assessing Quality
- Cuse and Effect Analysis
- Cost models

Part 4

- Improvement Projects Prioritization
- Design of Experiments
- MINITAB Part 6- Designing Experiments
- THE ALUMINIUM WHEELS CASE

Part 5

- Risk Management
- After Action Review (AAR)
- Working as a team
- Basics of Lean Manufacturing

Training

Thank You!

